О группе

Place to share astronomy and space science related photos

Обсуждения

This observation shows a secondary crater field, which form when material ejected from a larger impact event impacts the Martian surface. One impact event, depending on the size of the impactor, can form hundreds of millions of secondary craters at essentially the same time.

Primary craters (those created directly from an impactor from space) can be the same size as secondary craters, which makes dating surfaces based on the number of accumulated craters difficult to near-impossible. Secondary craters are distinguished from primaries based on their morphologies. They are sometimes irregularly shaped, as seen in this image, because they form at relatively low velocities. The velocity of the impactor determines a crater’s size, shape, and depth, with lower energy...
Explanation: An eerie blue glow and ominous columns of dark dust highlight M78 and other bright reflection nebula in the constellation of Orion. The dark filamentary dust not only absorbs light, but also reflects the light of several bright blue stars that formed recently in the nebula. Of the two reflection nebulas pictured above, the more famous nebula is M78, in the image center, while NGC 2071 can be seen to its lower left. The same type of scattering that colors the daytime sky further enhances the blue color. M78 is about five light-years across and visible through a small telescope. M78 appears above only as it was 1600 years ago, however, because that is how long it takes light to go from there to here. M78 belongs to the larger Orion Molecular Cloud Complex that contains the...
Cocoon of a New White Dwarf
Explanation: Like a butterfly, a white dwarf star begins its life by casting off a cocoon that enclosed its former self. In this analogy, however, the Sun would be a caterpillar and the ejected shell of gas would become the prettiest of all! In the above cocoon, the planetary nebula designated NGC 2440, contains one of the hottest white dwarf stars known. The white dwarf can be seen as the bright dot near the photo's center. Our Sun will eventually become a white dwarf butterfly but not for another 5 billion years. The above false color image was post-processed by Forrest Hamilton.
ESO has released a dramatic new image of NGC 346, the brightest star-forming region in our neighbouring galaxy, the Small Magellanic Cloud, 210 000 light-years away towards the constellation of Tucana (the Toucan). The light, wind and heat given off by massive stars have dispersed the glowing gas within and around this star cluster, forming a surrounding wispy nebular structure that looks like a cobweb. NGC 346, like other beautiful astronomical scenes, is a work in progress, and changes as the aeons pass. As yet more stars form from loose matter in the area, they will ignite, scattering leftover dust and gas, carving out great ripples and altering the face of this lustrous object.

  • « Previous
  • 1
  • Next »