Carlos Alonso-Ron » Публикация

Поделиться публикацией:
Опубликовать в блог:
Опубликовано 2008-05-01 Опубликовано на SciPeople2010-12-30 22:57:21 ЖурналBiophysical Journal


Thermodynamic and kinetic properties of amino-terminal and S4-S5 loop HERG channel mutants under steady-state conditions.
Alonso-Ron C, de la Peña P, Miranda P, Domínguez P, Barros F. / Carlos Alonso-Ron
Аннотация Gating kinetics and underlying thermodynamic properties of human ether-a-go-go-related gene (HERG) K(+) channels expressed in Xenopus oocytes were studied using protocols able to yield true steady-state kinetic parameters. Channel mutants lacking the initial 16 residues of the amino terminus before the conserved eag/PAS region showed significant positive shifts in activation voltage dependence associated with a reduction of z(g) values and a less negative DeltaG(o), indicating a deletion-induced displacement of the equilibrium toward the closed state. Conversely, a negative shift and an increased DeltaG(o), indicative of closed-state destabilization, were observed in channels lacking the amino-terminal proximal domain. Furthermore, accelerated activation and deactivation kinetics were observed in these constructs when differences in driving force were considered, suggesting that the presence of distal and proximal amino-terminal segments contributes in wild-type channels to specific chemical interactions that raise the energy barrier for activation. Steady-state characteristics of some single point mutants in the intracellular loop linking S4 and S5 helices revealed a striking parallelism between the effects of these mutations and those of the amino-terminal modifications. Our data indicate that in addition to the recognized influence of the initial amino-terminus region on HERG deactivation, this cytoplasmic region also affects activation behavior. The data also suggest that not only a slow movement of the voltage sensor itself but also delaying its functional coupling to the activation gate by some cytoplasmic structures possibly acting on the S4-S5 loop may contribute to the atypically slow gating of HERG.
Ключевые слова публикации:
       

Комментарии

Вам необходимо зайти или зарегистрироваться для комментирования
Этот комментарий был удален
Этот комментарий был удален
Этот комментарий был удален