Игорь Баскин » Публикация

Поделиться публикацией:
Опубликовать в блог:
Опубликовано 2009-01-06 Опубликовано на SciPeople2011-02-16 00:40:08 ЖурналJournal of Chemical Information and Modeling

Inductive Transfer of Knowledge: Application of Multi-Task Learning and Feature Net Approaches to Model Tissue-Air Partition Coefficients
A.Varnek, C.Gaudin, G.Marcou, I. Baskin, A.K.Pandey, I.V.Tetko / Игорь Баскин
J. Chem. Inf. Model., 2009, V. 49, No. 1, P. 133-144. DOI: 10.1021/ci8002914
Аннотация Two inductive knowledge transfer approaches - multitask learning (MTL) and Feature Net (FN) - have been used to build predictive neural networks (ASNN) and PLS models for 11 types of tissue-air partition coefficients (TAPC). Unlike conventional single-task learning (STL) modeling focused only on a single target property without any relations to other properties, in the framework of inductive transfer approach, the individual models are viewed as nodes in the network of interrelated models built in parallel (MTL) or sequentially (FN). It has been demonstrated that MTL and FN techniques are extremely useful in structure-property modeling on small and structurally diverse data sets, when conventional STL modeling is unable to produce any predictive model. The predictive STL individual models were obtained for 4 out of 11 TAPC whereas application of inductive knowledge transfer techniques resulted in models for 9 TAPC. Differences in prediction performances of the models as a function of the machine-learning method, and of the number of properties simultaneously involved in the learning, has been discussed.
Ключевые слова публикации:


Вам необходимо зайти или зарегистрироваться для комментирования
Этот комментарий был удален
Этот комментарий был удален
Этот комментарий был удален