Varun Bajaj » Публикация

Поделиться публикацией:
Опубликовать в блог:
Опубликовано 2012-01-12 Опубликовано на SciPeople2012-04-06 13:11:53 ЖурналIEEE Transaction on Information Technology in BioMedicine, In press, 2012.

Classification of seizure and non-seizure EEG signals using empirical mode decomposition
Varun Bajaj, / Varun Bajaj
Аннотация In this paper, we present a new method for classification of electroencephalogram (EEG) signals using empirical mode decomposition (EMD) method. The intrinsic mode functions (IMFs) generated by EMD method can be considered as a set of amplitude and frequency modulated (AM-FM) signals. The Hilbert transformation of IMFs provides an analytic signal representation of the IMFs. The two bandwidths, namely amplitude modulation bandwidth (BAM) and frequency modulation bandwidth (BFM), computed from the analytic IMFs, have been used as an input to least squares support vector machine (LS-SVM) for classifying seizure and non-seizure EEG signals. The proposed method for classification of EEG signals based on the bandwidth features (BAM and BFM) and the LS-SVM has provided better classification accuracy than the method of Liang et. al [20]. The experimental results with the recorded EEG signals from a published dataset are included to show the effectiveness of the proposed method for EEG signal classification.
Ключевые слова публикации:


Вам необходимо зайти или зарегистрироваться для комментирования
Этот комментарий был удален
Этот комментарий был удален
Этот комментарий был удален