Екатерина Дюжева » Публикация

Поделиться публикацией:
Опубликовать в блог:
Опубликовано 2017-11-23 Опубликовано на SciPeople2017-11-23 14:33:39 ЖурналИскусственный интеллект погрузится во вселенную молекул в поиске удивительных лекарств


Искусственный интеллект погрузится во вселенную молекул в поиске удивительных лекарств

Искусственный интеллект погрузится во вселенную молекул в поиске удивительных лекарств

Темной ночью, вдали от городского света, звезды Млечного Пути кажутся несметными. Но из любой точки невооруженному глазу видно не больше 4500 звезд. В нашей же галактике их 100-400 миллиардов, галактик во Вселенной и того больше. Выходит, в ночном небе не так много звезд. Однако даже это число открывает перед нами глубокую подноготную… лекарств и препаратов. Дело в том, что число возможных органических соединений с лекарственными способностями превышает число звезд во Вселенной более чем на 30 порядков. И химические конфигурации, которые создают ученые из существующих медикаментов, сродни звездам, которые мы могли бы увидеть в центре города ночью.

Поиск всех возможных лекарств — непосильная задача для человека, как и исследование всего физического пространства, и даже если бы мы могли, большая часть обнаруженного не соответствовала бы нашим целям. Тем не менее мысль о том, что чудесные лекарства могут скрываться среди изобилия, слишком заманчива, чтоб ее игнорировать.

Именно поэтому нам стоит использовать искусственный интеллект, который сможет работать больше и ускорить открытие. Так считает Алекс Жаворонков, выступивший на Exponential Medicine в Сан-Диего на прошлой неделе. Это применение может стать крупнейшим для ИИ в медицине.

Собаки, диагноз и лекарства Жаворонков — CEO Insilico Medicine и CSO Biogerontology Research Foundation. Insilico — один из множества стартапов, разрабатывающих ИИ, способный ускорить открытие новых лекарств и препаратов.

За последние годы, рассказал Жаворонков, известная техника машинного обучения — глубокое обучение — осуществила прогресс на нескольких фронтах. Алгоритмы, способные обучаться игре в видеоигры — вроде AlphaGo Zero или покериста Carnegie Mellon — представляют самый большой предмет интереса. Но распознавание закономерностей — вот что дало мощный толчок глубокому обучению, когда алгоритмы машинного обучения наконец-то начали отличать кошек от собак и делать это достаточно быстро и точно.

В медицине алгоритмы глубокого обучения, обученные по базам данных медицинских снимков, могут выявлять опасные для жизни заболевания с равной или большей точностью, чем специалисты-люди. Есть даже предположение, что ИИ, если мы научимся ему доверять, может быть бесценным при диагностике болезни. И как отметил Жаворонков, грядет больше приложений и послужной список будет только расти.

«Tesla уже выводит автомобили на улицу», говорит Жаворонков. «Трех-, четырехлетняя технология уже перевозит пассажиров из пункта А в пункт Б на скорости 200 километров час; одна ошибка — и ты мертв. Но люди доверяют свои жизни этой технологии».

«Почему бы не делать того же в фармацевтике?».

Пробы и ошибки, снова и снова В фармацевтических исследованиях ИИ не придется водить автомобиль. Он станет ассистентом, который в паре с химиком или двумя сможет ускорить открытие препаратов, просматривая больше вариантов в поисках лучших кандидатов.

Пространство для оптимизации и повышения эффективности просто огромное, считает Жаворонков.

Поиск препаратов — кропотливое и дорогостоящее занятие. Химики просеивают десятки тысяч возможных соединений в поисках самых многообещающих. Из них лишь некоторые уходят на дальнейшее изучение, и еще меньше будут проходить испытания на людях, а из этих вообще крохи будут одобрены к дальнейшему использованию.

Весь этот процесс может занять много лет и стоить сотни миллионов долларов.

Это проблема касается больших данных (big data), а глубокое обучение преуспевает в работе с большими данными. Первые приложения показали, что системы ИИ на основе глубокого обучения способны находить едва заметные закономерности в гигантских выборках данных. Хотя производители лекарств уже используют программное обеспечение для просеивания соединений, такое программное обеспечение требует четких правил, написанных химиками. Плюсы ИИ в данном деле — его способность учиться и совершенствоваться самостоятельно.

«Существует две стратегии инноваций на базе ИИ в фармацевтике, которые обеспечат вас лучшими молекулами и быстрым одобрением», говорит Жаворонков. «Один ищет иглу в стоге сена, а другой создает новую иглу».

Чтобы найти иголку в стоге сена, алгоритмы обучаются на больших база данных молекул. Затем они ищут молекулы с подходящими свойствами. Но создать новую иглу? Эту возможность предоставляют генеративные состязательные сети, на которых специализируется Жаворонков.

Такие алгоритмы ставят две нейронные сети друг против друга. Одна генерирует осмысленный результат, а другая решает, является ли этот результат истинным или ложным, говорит Жаворонков. В совокупности эти сети генерируют новые объекты, такие как текст, изображения или, в данном случае, молекулярные структуры.

«Мы начали использовать эту конкретную технологию, чтобы глубокие нейронные сети вообразили новые молекулы, чтобы сделать ее идеальной с самого начала. Нам нужны идеальные иглы», говорит Жаворонков. «Вы можете обратиться к этой генеративной состязательной сети и попросить ее создать молекулы, которые ингибируют белок Х в концентрации Y, с наивысшей жизнеспособностью, заданными характеристиками и минимальными побочными эффектами».

Жаворонков полагает, что ИИ может найти или изготовить больше иголок из множества молекулярных возможностей, освободить химиков-людей, чтобы те могли сосредоточиться на синтезе только самых перспективных. Если это сработает, как надеется он, мы сможем увеличить количество попаданий, минимизировать промахи и в целом ускорить процесс. https://ru.onlytrends.info/

Аннотация Искусственный интеллект погрузится во вселенную молекул в поиске удивительных лекарств
Ключевые слова публикации:
 

Нет комментариев

Вам необходимо зайти или зарегистрироваться для комментирования